1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.cluster import KMeans from scipy.spatial.distance import cdist from multiprocessing import Pool import pandas as pd import numpy as np import jieba import time import os
def run_lda(cntTf, n_topic, idx): print("# Topic nums: %d, " % n_topic, "Start analysing") t0 = time.time() lda = LatentDirichletAllocation(n_components=n_topic, max_iter=200, learning_method='batch', evaluate_every=200, verbose=0) lda.fit(cntTf) perplexity = lda.perplexity(cntTf) prob = lda.transform(cntTf) comp = lda.components_ / lda.components_.sum(axis=1)[:, np.newaxis] print("# Topic nums: %d, " % n_topic, "end time: %0.3fs," % (time.time() - t0), "perplexity: %0.3f" % perplexity) return (perplexity, prob, comp)
def run_kmeans(X, k, i): print("# Category nums: %d, " % k, "Start analysing") t0 = time.time() kmeans = KMeans(n_clusters=k) kmeans.fit(X) SSE = sum(np.min(cdist(X, kmeans.cluster_centers_, "euclidean"), axis=1)) / X.shape[0] print("# Category nums: %d, " % k, "end time: %0.3fs," % (time.time() - t0), "SSE: %0.3f" % SSE) return (SSE)
def get_perplexityLst_flag(perplexityLst): flag_id = 0 for i in range(len(perplexityLst) - 1): if perplexityLst[i] < perplexityLst[i + 1]: flag_id = i break return (flag_id)
def get_kmeans_flag(meandistortions): flag_id = 0 target = (meandistortions[0] + 3 * meandistortions[-1]) / 4 for i in range(len(meandistortions) - 1): if (meandistortions[i] > target and meandistortions[i + 1] < target): flag_id = i + 1 break return (flag_id)
def get_time_stamp(): ct = time.time() local_time = time.localtime(ct) data_head = time.strftime("%Y-%m-%d %H:%M:%S", local_time) data_secs = (ct - int(ct)) * 1000 time_stamp = "%s.%03d" % (data_head, data_secs) return (time_stamp)
if __name__ == '__main__': workfolder = "D:\\Research\\Datasets\\NLP" Rpt_no = get_time_stamp() pool_maxnum = 4 n_topics = list(range(2, 6)) jieba.suggest_freq('银行', True) jieba.suggest_freq('张继科', True) stpwrdlst = [] file_list = os.listdir(workfolder) try: with open(os.path.join(workfolder, 'stop_words.txt')) as stpwrd_dic: stpwrd_content = stpwrd_dic.read() stpwrdlst = stpwrd_content.splitlines() file_list.remove('stop_words.txt') except: pass
all_docs = [] for file_name in file_list: if os.path.splitext(file_name)[1] == '.txt': doc = os.path.splitext(file_name)[0] data_path = os.path.join(workfolder, file_name) with open(data_path, 'rb') as f: document = f.read() document_cut = jieba.cut(document) result = ' '.join(document_cut) all_docs.append(result) print('Words Perpare Done!')
cntVector = CountVectorizer(stop_words=stpwrdlst) cntTf = cntVector.fit_transform(all_docs)
resLst = [1.0] * len(n_topics) perplexityLst = [1.0] * len(n_topics) PROB = [1.0] * len(n_topics) COMP = [1.0] * len(n_topics)
p = Pool(pool_maxnum) print('multiprocess start, begin to caculate LDA') for i in range(len(n_topics)): res = p.apply_async(run_lda, args=(cntTf, n_topics[i], i,)) resLst[i] = res p.close() p.join() print('LDA finish')
for i in range(len(n_topics)): res = resLst[i].get() perplexityLst[i] = res[0] PROB[i] = res[1] COMP[i] = res[2] flag_id = get_perplexityLst_flag(perplexityLst)
Tbl_RPT_Cfg_Perplexity = pd.DataFrame(columns=['Rpt_no', 'Topic_Nums', 'Perplexity', 'Flag']) Tbl_RPT_Cfg_Perplexity.Topic_Nums = n_topics Tbl_RPT_Cfg_Perplexity.Perplexity = perplexityLst Tbl_RPT_Cfg_Perplexity.Rpt_no = Rpt_no Tbl_RPT_Cfg_Perplexity.Flag = 0 Tbl_RPT_Cfg_Perplexity.loc[flag_id, 'Flag'] = 1
print('start using doc-topic prob matrix to apply clustering') prob = PROB[flag_id] X = np.array(prob) K = n_topics.copy() resLst = [1.0] * len(K) meandistortions = [1.0] * len(K) KMEANS = [1.0] * len(K)
p = Pool(pool_maxnum) for i in range(len(K)): res = p.apply_async(run_kmeans, args=(X, K[i], i,)) resLst[i] = res p.close() p.join() print('KMEANS finish')
for i in range(len(K)): meandistortions[i] = resLst[i].get()
flag_id = get_kmeans_flag(meandistortions) Tbl_RPT_Cfg_Kmeans = pd.DataFrame(columns=['Rpt_no', 'KMEANS', 'SSE', 'Flag']) Tbl_RPT_Cfg_Kmeans.KMEANS = K Tbl_RPT_Cfg_Kmeans.SSE = meandistortions Tbl_RPT_Cfg_Kmeans.Rpt_no = Rpt_no Tbl_RPT_Cfg_Kmeans.Flag = 0 Tbl_RPT_Cfg_Kmeans.loc[flag_id, 'Flag'] = 1
kmeans = KMeans(n_clusters=K[flag_id]) kmeans.fit(X) output = kmeans.labels_ print(output) print('finish')
|