lasso+randomforest预测房价

  Kaggle的练习比赛——House Prices Advanced Regression
Techniques,使用了lasso和randomforest来预测房价,误差0.12772(37%)。留底源码。

  不知道为什么开了代理kaggle的kernel都提交不了,郁闷啊,在这边留底一份源码吧,模型结果有待改进但是整体框架应该是比较全面的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 31 14:41:10 2018

主要参考:
https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard

@author: jiawei
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import norm, skew

##############
## settings ##
##############

# set seaborn color and style
sns.set_palette('hls')
sns.set_style('darkgrid')

# limiting floats output to 3 decimal points
pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x))

# ignore annoying warning (from sklearn and seaborn)
import warnings


def ignore_warn(*args, **kwargs):
pass


warnings.warn = ignore_warn

###############
## load data ##
###############

# get datasets
train = pd.read_csv(r'D:\Research\Datasets\kaggle\House Prices Advanced Regression Techniques\train.csv')
test = pd.read_csv(r'D:\Research\Datasets\kaggle\House Prices Advanced Regression Techniques\test.csv')
sample_submission = pd.read_csv(
r'D:\Research\Datasets\kaggle\House Prices Advanced Regression Techniques\sample_submission.csv')

# save and drop ids
train_id = train.Id
test_id = test.Id
train.drop('Id', axis=1, inplace=True)
test.drop('Id', axis=1, inplace=True)

##############################
## target variable analysis ##
##############################

# comparing target to norm
sns.distplot(train['SalePrice'], fit=norm)
(mu, sigma) = norm.fit(train['SalePrice'])
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f})'.format(mu, sigma)], loc='best')
plt.ylabel('Frequency')
plt.title('SalePrice distribution')

# get also the QQ-plot
fig = plt.figure()
res = stats.probplot(train['SalePrice'], plot=plt)
plt.show()

# transform and make target more normally distributed use log1p:log(1+x)
train["SalePrice"] = np.log1p(train["SalePrice"])

##########################
## features engineering ##
##########################

# correlation map
corrmat = train.corr()
plt.subplots(figsize=(10, 10))
sns.heatmap(corrmat, vmax=0.8, square=True)

# Top10 correlation matrix
cols = corrmat.nlargest(10, 'SalePrice')['SalePrice'].index
cm = np.corrcoef(train[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values,
xticklabels=cols.values)
plt.show()

# scatterplot top correlate features
sns.set()
cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars']
sns.pairplot(train[cols], size=2.5)
plt.show()

# box plot categorical features
data = pd.concat([train['SalePrice'], train['OverallQual']], axis=1)
f, ax = plt.subplots(figsize=(8, 6))
fig = sns.boxplot(x='OverallQual', y='SalePrice', data=data)

# delete outliers
fig, ax = plt.subplots()
ax.scatter(x=train['GrLivArea'], y=train['SalePrice'])
plt.xlabel('GrLivArea', fontsize=10)
plt.ylabel('SalePrice', fontsize=10)
plt.show()
train = train.drop(train[(train['GrLivArea'] > 4000) & (train['SalePrice'] < 13)].index)

# explore train and test data together
ntrain = train.shape[0]
ntest = test.shape[0]
y_train = train.SalePrice.values
all_data = pd.concat((train, test)).reset_index(drop=True)
all_data.drop(['SalePrice'], axis=1, inplace=True)

# check every feature, impute missing values, encode categorical features
tocheck_features = (pd.DataFrame(all_data.dtypes).join(corrmat.SalePrice)).rename(
columns={0: 'type', 'SalePrice': 'CorrToTarget'})
'''
MSSubClass: Identifies the type of dwelling involved in the sale.
20 1-STORY 1946 & NEWER ALL STYLES
30 1-STORY 1945 & OLDER
40 1-STORY W/FINISHED ATTIC ALL AGES……
so it's categorical feature in int, no order.
'''
print('nums of na: ', all_data['MSSubClass'].isnull().sum())
all_data['MSSubClass'] = all_data['MSSubClass'].astype(object)
tocheck_features.drop('MSSubClass', inplace=True)
'''
MSZoning: Identifies the general zoning classification of the sale.
A Agriculture
C Commercial
FV Floating Village Residential……
categorical feature, 4 values missing, fill with most common value.
'''
print('nums of na: ', all_data['MSZoning'].isnull().sum())
all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()[0])
tocheck_features.drop('MSZoning', inplace=True)
'''
LotFrontage: Linear feet of street connected to property
486 values missing, fill with Neighborhood'median value.
'''
print('nums of na: ', all_data['LotFrontage'].isnull().sum())
all_data['LotFrontage'] = all_data.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median()))
tocheck_features.drop('LotFrontage', inplace=True)
'''
LotArea: Lot size in square feet
'''
print('nums of na: ', all_data['LotArea'].isnull().sum())
tocheck_features.drop('LotArea', inplace=True)
'''
Street: Type of road access to property
Grvl Gravel
Pave Paved
'''
print('nums of na: ', all_data['Street'].isnull().sum())
tocheck_features.drop('Street', inplace=True)
'''
Alley: Type of alley access to property
Grvl Gravel
Pave Paved
NA No alley access
2721 values missing, fill with NotExist.
'''
print('nums of na: ', all_data['Alley'].isnull().sum())
all_data['Alley'] = all_data['Alley'].fillna('NotExist')
tocheck_features.drop('Alley', inplace=True)
'''
LotShape: General shape of property
Reg Regular
IR1 Slightly irregular
IR2 Moderately Irregular
IR3 Irregular
'''
print('nums of na: ', all_data['LotShape'].isnull().sum())
tocheck_features.drop('LotShape', inplace=True)
'''
LandContour: Flatness of the property
Lvl Near Flat/Level
Bnk Banked - Quick and significant rise from street grade to building……
'''
print('nums of na: ', all_data['LandContour'].isnull().sum())
tocheck_features.drop('LandContour', inplace=True)
'''
Utilities: Type of utilities available
AllPub All public Utilities (E,G,W,& S)
NoSewr Electricity, Gas, and Water (Septic Tank)
NoSeWa Electricity and Gas Only……
'''
print('nums of na: ', all_data['Utilities'].isnull().sum())
all_data['Utilities'] = all_data['Utilities'].fillna(all_data['Utilities'].mode()[0])
tocheck_features.drop('Utilities', inplace=True)
'''
LotConfig: Lot configuration
Inside Inside lot
Corner Corner lot
CulDSac Cul-de-sac……
'''
print('nums of na: ', all_data['LotConfig'].isnull().sum())
tocheck_features.drop('LotConfig', inplace=True)
'''
LandSlope: Slope of property
Gtl Gentle slope
Mod Moderate Slope
Sev Severe Slope
'''
print('nums of na: ', all_data['LandSlope'].isnull().sum())
tocheck_features.drop('LandSlope', inplace=True)
'''
Neighborhood: Physical locations within Ames city limits
Blmngtn Bloomington Heights
Blueste Bluestem
BrDale Briardale
'''
print('nums of na: ', all_data['Neighborhood'].isnull().sum())
tocheck_features.drop('Neighborhood', inplace=True)
'''
Condition1: Proximity to various conditions
Artery Adjacent to arterial street
Feedr Adjacent to feeder street
Norm Normal……
'''
print('nums of na: ', all_data['Condition1'].isnull().sum())
tocheck_features.drop('Condition1', inplace=True)
'''
Condition2: Proximity to various conditions (if more than one is present)
Artery Adjacent to arterial street
Feedr Adjacent to feeder street
Norm Normal……
'''
print('nums of na: ', all_data['Condition2'].isnull().sum())
tocheck_features.drop('Condition2', inplace=True)
'''
BldgType: Type of dwelling
1Fam Single-family Detached
2FmCon Two-family Conversion; originally built as one-family dwelling
Duplx Duplex……
'''
print('nums of na: ', all_data['BldgType'].isnull().sum())
tocheck_features.drop('BldgType', inplace=True)
'''
HouseStyle: Style of dwelling
1Story One story
1.5Fin One and one-half story: 2nd level finished
1.5Unf One and one-half story: 2nd level unfinished……
'''
print('nums of na: ', all_data['HouseStyle'].isnull().sum())
tocheck_features.drop('HouseStyle', inplace=True)
'''
OverallQual: Rates the overall material and finish of the house
10 Very Excellent
9 Excellent
8 Very Good……
'''
print('nums of na: ', all_data['OverallQual'].isnull().sum())
tocheck_features.drop('OverallQual', inplace=True)
'''
OverallCond: Rates the overall condition of the house
10 Very Excellent
9 Excellent
8 Very Good……
'''
print('nums of na: ', all_data['OverallCond'].isnull().sum())
tocheck_features.drop('OverallCond', inplace=True)
'''
YearBuilt: Original construction date
'''
print('nums of na: ', all_data['YearBuilt'].isnull().sum())
tocheck_features.drop('YearBuilt', inplace=True)
'''
YearRemodAdd: Remodel date (same as construction date if no remodeling or additions)
'''
print('nums of na: ', all_data['YearRemodAdd'].isnull().sum())
tocheck_features.drop('YearRemodAdd', inplace=True)
'''
RoofStyle: Type of roof
Flat Flat
Gable Gable
Gambrel Gabrel (Barn)……
'''
print('nums of na: ', all_data['RoofStyle'].isnull().sum())
tocheck_features.drop('RoofStyle', inplace=True)
'''
RoofMatl: Roof material
ClyTile Clay or Tile
CompShg Standard (Composite) Shingle
Membran Membrane……
'''
print('nums of na: ', all_data['RoofMatl'].isnull().sum())
tocheck_features.drop('RoofMatl', inplace=True)
'''
Exterior1st: Exterior covering on house
AsbShng Asbestos Shingles
AsphShn Asphalt Shingles
BrkComm Brick Common……
1 value missing, fill with most common value.
'''
print('nums of na: ', all_data['Exterior1st'].isnull().sum())
all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode()[0])
tocheck_features.drop('Exterior1st', inplace=True)
'''
Exterior2nd: Exterior covering on house (if more than one material)
AsbShng Asbestos Shingles
AsphShn Asphalt Shingles
BrkComm Brick Common……
1 value missing, fill with most common value.
'''
print('nums of na: ', all_data['Exterior2nd'].isnull().sum())
all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode()[0])
tocheck_features.drop('Exterior2nd', inplace=True)
'''
MasVnrType: Masonry veneer type
BrkCmn Brick Common
BrkFace Brick Face
CBlock Cinder Block……
24 values missing, fill with most common value.
'''
print('nums of na: ', all_data['MasVnrType'].isnull().sum())
all_data['MasVnrType'] = all_data['MasVnrType'].fillna(all_data['MasVnrType'].mode()[0])
tocheck_features.drop('MasVnrType', inplace=True)
'''
MasVnrArea: Masonry veneer area in square feet
23 values missing, fill with most common value.
'''
print('nums of na: ', all_data['MasVnrArea'].isnull().sum())
all_data['MasVnrArea'] = all_data['MasVnrArea'].fillna(0)
tocheck_features.drop('MasVnrArea', inplace=True)
'''
ExterQual: Evaluates the quality of the material on the exterior
Ex Excellent
Gd Good
TA Average/Typical……
ordered categorical feature, change to scores.
'''
print('nums of na: ', all_data['ExterQual'].isnull().sum())
all_data['ExterQual'] = all_data['ExterQual'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
tocheck_features.drop('ExterQual', inplace=True)
'''
ExterCond: Evaluates the present condition of the material on the exterior
Ex Excellent
Gd Good
TA Average/Typical……
ordered categorical feature, change to scores.
'''
print('nums of na: ', all_data['ExterCond'].isnull().sum())
all_data['ExterCond'] = all_data['ExterCond'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
tocheck_features.drop('ExterCond', inplace=True)
'''
Foundation: Type of foundation
BrkTil Brick & Tile
CBlock Cinder Block
PConc Poured Contrete……
'''
print('nums of na: ', all_data['Foundation'].isnull().sum())
tocheck_features.drop('Foundation', inplace=True)
'''
BsmtQual: Evaluates the height of the basement
Ex Excellent (100+ inches)
Gd Good (90-99 inches)
TA Typical (80-89 inches)……
ordered categorical feature, change to scores. 81 values missing, don't have basement, fill with 0.
'''
print('nums of na: ', all_data['BsmtQual'].isnull().sum())
all_data['BsmtQual'] = all_data['BsmtQual'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['BsmtQual'] = all_data['BsmtQual'].fillna(0)
tocheck_features.drop('BsmtQual', inplace=True)
'''
BsmtCond: Evaluates the general condition of the basement
Ex Excellent
Gd Good
TA Typical - slight dampness allowed……
ordered categorical feature, change to scores. 82 values missing, don't have basement, fill with 0.
'''
print('nums of na: ', all_data['BsmtCond'].isnull().sum())
all_data['BsmtCond'] = all_data['BsmtCond'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['BsmtCond'] = all_data['BsmtCond'].fillna(0)
tocheck_features.drop('BsmtCond', inplace=True)
'''
BsmtExposure: Refers to walkout or garden level walls
Gd Good Exposure
Av Average Exposure (split levels or foyers typically score average or above)
Mn Mimimum Exposure……
82 values missing, don't have basement, fill with Nb.
'''
print('nums of na: ', all_data['BsmtExposure'].isnull().sum())
all_data['BsmtExposure'] = all_data['BsmtExposure'].fillna('Nb')
tocheck_features.drop('BsmtExposure', inplace=True)
'''
BsmtFinType1: Rating of basement finished area
GLQ Good Living Quarters
ALQ Average Living Quarters
BLQ Below Average Living Quarters……
ordered categorical feature, change to scores. 79 values missing, don't have basement, fill with 0.
'''
print('nums of na: ', all_data['BsmtFinType1'].isnull().sum())
all_data['BsmtFinType1'] = all_data['BsmtFinType1'].map(
{'GLQ': 100, 'ALQ': 90, 'BLQ': 80, 'Rec': 70, 'LwQ': 60, 'Unf': 50})
all_data['BsmtFinType1'] = all_data['BsmtFinType1'].fillna(0)
tocheck_features.drop('BsmtFinType1', inplace=True)
'''
BsmtFinSF1: Type 1 finished square feet
1 value missing, fill with 0.
'''
print('nums of na: ', all_data['BsmtFinSF1'].isnull().sum())
all_data['BsmtFinSF1'] = all_data['BsmtFinSF1'].fillna(0)
tocheck_features.drop('BsmtFinSF1', inplace=True)
'''
BsmtFinType2: Rating of basement finished area (if multiple types)
GLQ Good Living Quarters
ALQ Average Living Quarters
BLQ Below Average Living Quarters……
ordered categorical feature, change to scores. 80 values missing, don't have basement, fill with 0.
'''
print('nums of na: ', all_data['BsmtFinType2'].isnull().sum())
all_data['BsmtFinType2'] = all_data['BsmtFinType2'].map(
{'GLQ': 100, 'ALQ': 90, 'BLQ': 80, 'Rec': 70, 'LwQ': 60, 'Unf': 50})
all_data['BsmtFinType2'] = all_data['BsmtFinType2'].fillna(0)
tocheck_features.drop('BsmtFinType2', inplace=True)
'''
BsmtFinSF2: Type 2 finished square feet
1 value missing, fill with 0.
'''
print('nums of na: ', all_data['BsmtFinSF2'].isnull().sum())
all_data['BsmtFinSF2'] = all_data['BsmtFinSF2'].fillna(0)
tocheck_features.drop('BsmtFinSF2', inplace=True)
'''
BsmtUnfSF: Unfinished square feet of basement area
1 value missing, fill with 0.
'''
print('nums of na: ', all_data['BsmtUnfSF'].isnull().sum())
all_data['BsmtUnfSF'] = all_data['BsmtUnfSF'].fillna(0)
tocheck_features.drop('BsmtUnfSF', inplace=True)
'''
TotalBsmtSF: Total square feet of basement area
1 value missing, fill with 0.
'''
print('nums of na: ', all_data['TotalBsmtSF'].isnull().sum())
all_data['TotalBsmtSF'] = all_data['TotalBsmtSF'].fillna(0)
tocheck_features.drop('TotalBsmtSF', inplace=True)
'''
Heating: Type of heating
Floor Floor Furnace
GasA Gas forced warm air furnace
GasW Gas hot water or steam heat……
'''
print('nums of na: ', all_data['Heating'].isnull().sum())
tocheck_features.drop('Heating', inplace=True)
'''
HeatingQC: Heating quality and condition
Ex Excellent
Gd Good……
'''
print('nums of na: ', all_data['HeatingQC'].isnull().sum())
all_data['HeatingQC'] = all_data['HeatingQC'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
tocheck_features.drop('HeatingQC', inplace=True)
'''
CentralAir: Central air conditioning
N No
Y Yes
'''
print('nums of na: ', all_data['CentralAir'].isnull().sum())
tocheck_features.drop('CentralAir', inplace=True)
'''
Electrical: Electrical system
SBrkr Standard Circuit Breakers & Romex
FuseA Fuse Box over 60 AMP and all Romex wiring (Average)
FuseF 60 AMP Fuse Box and mostly Romex wiring (Fair)
1 value missing, fill with most common value.
'''
print('nums of na: ', all_data['Electrical'].isnull().sum())
all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode()[0])
tocheck_features.drop('Electrical', inplace=True)
'''
1stFlrSF: First Floor square feet
2ndFlrSF: Second floor square feet
LowQualFinSF: Low quality finished square feet (all floors)
GrLivArea: Above grade (ground) living area square feet
'''
print('nums of na: ', all_data['1stFlrSF'].isnull().sum())
tocheck_features.drop('1stFlrSF', inplace=True)
print('nums of na: ', all_data['2ndFlrSF'].isnull().sum())
tocheck_features.drop('2ndFlrSF', inplace=True)
print('nums of na: ', all_data['LowQualFinSF'].isnull().sum())
tocheck_features.drop('LowQualFinSF', inplace=True)
print('nums of na: ', all_data['GrLivArea'].isnull().sum())
tocheck_features.drop('GrLivArea', inplace=True)
'''
BsmtFullBath: Basement full bathrooms
2 values missing, fill with 0.
BsmtHalfBath: Basement half bathrooms
2 values missing, fill with 0.
'''
print('nums of na: ', all_data['BsmtFullBath'].isnull().sum())
all_data['BsmtFullBath'] = all_data['BsmtFullBath'].fillna(0)
tocheck_features.drop('BsmtFullBath', inplace=True)
print('nums of na: ', all_data['BsmtHalfBath'].isnull().sum())
all_data['BsmtHalfBath'] = all_data['BsmtHalfBath'].fillna(0)
tocheck_features.drop('BsmtHalfBath', inplace=True)
'''
FullBath: Full bathrooms above grade
HalfBath: Half baths above grade
BedroomAbvGr: Bedrooms above grade (does NOT include basement bedrooms)
KitchenAbvGr: Kitchens above grade
'''
print('nums of na: ', all_data['FullBath'].isnull().sum())
tocheck_features.drop('FullBath', inplace=True)
print('nums of na: ', all_data['HalfBath'].isnull().sum())
tocheck_features.drop('HalfBath', inplace=True)
print('nums of na: ', all_data['BedroomAbvGr'].isnull().sum())
tocheck_features.drop('BedroomAbvGr', inplace=True)
print('nums of na: ', all_data['KitchenAbvGr'].isnull().sum())
tocheck_features.drop('KitchenAbvGr', inplace=True)
'''
KitchenQual: Kitchen quality
Ex Excellent
Gd Good……
1 value missing, fill with 0.
'''
print('nums of na: ', all_data['KitchenQual'].isnull().sum())
all_data['KitchenQual'] = all_data['KitchenQual'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['KitchenQual'] = all_data['KitchenQual'].fillna(0)
tocheck_features.drop('KitchenQual', inplace=True)
'''
TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
'''
print('nums of na: ', all_data['TotRmsAbvGrd'].isnull().sum())
tocheck_features.drop('TotRmsAbvGrd', inplace=True)
'''
Functional: Home functionality (Assume typical unless deductions are warranted)
Typ Typical Functionality
Min1 Minor Deductions 1……
2 value missings, fill with most common value.
'''
print('nums of na: ', all_data['Functional'].isnull().sum())
all_data['Functional'] = all_data['Functional'].fillna(all_data['Functional'].mode()[0])
tocheck_features.drop('Functional', inplace=True)
'''
Fireplaces: Number of fireplaces
'''
print('nums of na: ', all_data['Fireplaces'].isnull().sum())
tocheck_features.drop('Fireplaces', inplace=True)
'''
FireplaceQu: Fireplace quality
Ex Excellent - Exceptional Masonry Fireplace
Gd Good - Masonry Fireplace in main level……
'''
print('nums of na: ', all_data['FireplaceQu'].isnull().sum())
all_data['FireplaceQu'] = all_data['FireplaceQu'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['FireplaceQu'] = all_data['FireplaceQu'].fillna(0)
tocheck_features.drop('FireplaceQu', inplace=True)
'''
GarageType: Garage location
2Types More than one type of garage
Attchd Attached to home……
157 values missing, fill with NotExist.
'''
print('nums of na: ', all_data['GarageType'].isnull().sum())
all_data['GarageType'] = all_data['GarageType'].fillna('NotExist')
tocheck_features.drop('GarageType', inplace=True)
'''
GarageYrBlt: Year garage was built
159 values missing, fill with 0.
'''
print('nums of na: ', all_data['GarageYrBlt'].isnull().sum())
all_data['GarageYrBlt'] = all_data['GarageYrBlt'].fillna(0)
tocheck_features.drop('GarageYrBlt', inplace=True)
'''
GarageFinish: Interior finish of the garage
Fin Finished
RFn Rough Finished……
159 values missing, fill with NotExist.
'''
print('nums of na: ', all_data['GarageFinish'].isnull().sum())
all_data['GarageFinish'] = all_data['GarageFinish'].fillna('NotExist')
tocheck_features.drop('GarageFinish', inplace=True)
'''
GarageCars: Size of garage in car capacity
1 value missing, fill with 0.
GarageArea: Size of garage in square feet
'''
print('nums of na: ', all_data['GarageCars'].isnull().sum())
all_data['GarageCars'] = all_data['GarageCars'].fillna(0)
tocheck_features.drop('GarageCars', inplace=True)
print('nums of na: ', all_data['GarageArea'].isnull().sum())
all_data['GarageArea'] = all_data['GarageArea'].fillna(0)
tocheck_features.drop('GarageArea', inplace=True)
'''
GarageQual: Garage quality
Ex Excellent
Gd Good……
159 values missing, fill with 0.
'''
print('nums of na: ', all_data['GarageQual'].isnull().sum())
all_data['GarageQual'] = all_data['GarageQual'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['GarageQual'] = all_data['GarageQual'].fillna(0)
tocheck_features.drop('GarageQual', inplace=True)
'''
GarageCond: Garage condition
Ex Excellent
Gd Good……
159 values missing, fill with 0.
'''
print('nums of na: ', all_data['GarageCond'].isnull().sum())
all_data['GarageCond'] = all_data['GarageCond'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['GarageCond'] = all_data['GarageCond'].fillna(0)
tocheck_features.drop('GarageCond', inplace=True)
'''
PavedDrive: Paved driveway
Y Paved
P Partial Pavement
N Dirt/Gravel
'''
print('nums of na: ', all_data['PavedDrive'].isnull().sum())
tocheck_features.drop('PavedDrive', inplace=True)
'''
WoodDeckSF: Wood deck area in square feet
OpenPorchSF: Open porch area in square feet
EnclosedPorch: Enclosed porch area in square feet
3SsnPorch: Three season porch area in square feet
ScreenPorch: Screen porch area in square feet
PoolArea: Pool area in square feet
'''
print('nums of na: ', all_data['WoodDeckSF'].isnull().sum())
tocheck_features.drop('WoodDeckSF', inplace=True)
print('nums of na: ', all_data['OpenPorchSF'].isnull().sum())
tocheck_features.drop('OpenPorchSF', inplace=True)
print('nums of na: ', all_data['EnclosedPorch'].isnull().sum())
tocheck_features.drop('EnclosedPorch', inplace=True)
print('nums of na: ', all_data['3SsnPorch'].isnull().sum())
tocheck_features.drop('3SsnPorch', inplace=True)
print('nums of na: ', all_data['ScreenPorch'].isnull().sum())
tocheck_features.drop('ScreenPorch', inplace=True)
print('nums of na: ', all_data['PoolArea'].isnull().sum())
tocheck_features.drop('PoolArea', inplace=True)
'''
PoolQC: Pool quality
Ex Excellent
Gd Good……
change to scores, 2909 values missing, not exist, fill with 0.
'''
print('nums of na: ', all_data['PoolQC'].isnull().sum())
all_data['PoolQC'] = all_data['PoolQC'].map({'Ex': 100, 'Gd': 90, 'TA': 80, 'Fa': 70, 'Po': 60})
all_data['PoolQC'] = all_data['PoolQC'].fillna(0)
tocheck_features.drop('PoolQC', inplace=True)
'''
Fence: Fence quality
GdPrv Good Privacy
MnPrv Minimum Privacy……
2348 values missing, not exist, fill with NotExist.
'''
print('nums of na: ', all_data['Fence'].isnull().sum())
all_data['Fence'] = all_data['Fence'].fillna('NotExist')
tocheck_features.drop('Fence', inplace=True)
'''
MiscFeature: Miscellaneous feature not covered in other categories
Elev Elevator
Gar2 2nd Garage (if not described in garage section)……
'''
print('nums of na: ', all_data['MiscFeature'].isnull().sum())
all_data['MiscFeature'] = all_data['MiscFeature'].fillna('None')
tocheck_features.drop('MiscFeature', inplace=True)
'''
MiscVal: $Value of miscellaneous feature
'''
print('nums of na: ', all_data['MiscVal'].isnull().sum())
tocheck_features.drop('MiscVal', inplace=True)
'''
MoSold: Month Sold (MM)
YrSold: Year Sold (YYYY)
'''
print('nums of na: ', all_data['MoSold'].isnull().sum())
tocheck_features.drop('MoSold', inplace=True)
print('nums of na: ', all_data['YrSold'].isnull().sum())
tocheck_features.drop('YrSold', inplace=True)
'''
SaleType: Type of sale
WD Warranty Deed - Conventional
CWD Warranty Deed - Cash……
1 value missing, fill with most common value.
'''
print('nums of na: ', all_data['SaleType'].isnull().sum())
all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()[0])
tocheck_features.drop('SaleType', inplace=True)
'''
SaleCondition: Condition of sale
Normal Normal Sale
Abnorml Abnormal Sale - trade, foreclosure, short sale……
'''
print('nums of na: ', all_data['SaleCondition'].isnull().sum())
tocheck_features.drop('SaleCondition', inplace=True)

# check if there still exist feature to check
print(tocheck_features)

# check the skew of all numerical features
numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index
skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False)
skewness = pd.DataFrame({'Skew': skewed_feats})
skewness = skewness[abs(skewness.Skew) > 0.75]
from scipy.special import boxcox1p

skewed_features = skewness.index
# λ=0 then equivalent to log1p
lam = 0.15
for feat in skewed_features:
# all_data[feat] += 1
all_data[feat] = boxcox1p(all_data[feat], lam)
# all_data[skewed_features] = np.log1p(all_data[skewed_features])

# one-hot categorical features
all_data = pd.get_dummies(all_data)

# split train test
train = all_data[:ntrain]
test = all_data[ntrain:]

##############
## modeling ##
##############
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Lasso
from sklearn.ensemble import RandomForestRegressor

# searching for good models
# Lasso
# search_alpha=[1, 0.1, 0.001, 0.0005]
alpha = [round(i, 4) for i in list(np.linspace(0.0005, 0.1, 20))]
lasso_scores = [1.0] * len(alpha)
for i in range(len(alpha)):
lasso = make_pipeline(RobustScaler(), Lasso(alpha=alpha[i], random_state=13))
rmse = np.sqrt(-cross_val_score(lasso, train.values, y_train, scoring="neg_mean_squared_error", cv=5))
lasso_scores[i] = (round(rmse.mean(), 4))
plt.plot(alpha, lasso_scores)
plt.title('Lasso Mean Score')
plt.show()

# RandomForest
max_features = [round(i, 4) for i in list(np.linspace(0.1, 0.99, 20))]
RF_scores = [1.0] * len(max_features)
for i in range(len(max_features)):
RF = RandomForestRegressor(max_features=max_features[i], random_state=13)
rmse = np.sqrt(-cross_val_score(RF, train.values, y_train, scoring="neg_mean_squared_error", cv=5))
RF_scores[i] = (round(rmse.mean(), 4))
plt.plot(max_features, RF_scores)
plt.title('RF Mean Score')
plt.show()

# training
lasso = Lasso(alpha=alpha[lasso_scores.index(min(lasso_scores))])
lasso.fit(train.values, y_train)
rf = RandomForestRegressor(max_features=max_features[RF_scores.index(min(RF_scores))])
rf.fit(train.values, y_train)

# predicting
y_lasso = np.expm1(lasso.predict(test))
y_rf = np.expm1(rf.predict(test))

# ensemble prediction
ensemble = (y_lasso / min(lasso_scores) + y_rf / min(RF_scores)) / (1 / min(lasso_scores) + 1 / min(RF_scores))

################
## submission ##
################
sub = pd.DataFrame()
sub['Id'] = test_id
sub['SalePrice'] = ensemble
sub.to_csv('submission.csv', index=False)